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Osmotic control for vasopressin release has been recognized for several years. Further
understanding of factors affecting the sensitivity and threshold of ADH release has been
advanced by the technological development of a sensitive radioimmunoassay.

Evidence suggesting that ADH secretion is also mediated by nonosmotic stimuli involving a
separate anatomic pathway from the hypothalamic osmoreceptor has been well documented.
Experimental results suggest that the parasympathetic afferent pathways from both "high" and
"low" pressure receptors constitute the most important nonosmotic pathways for ADH release.
Factors such as hypoxia, altered hemodynamic states, alpha- and beta-adrenergic stimuli,
nicotine, adrenal insufficiency, and advanced hypothyroidism are likely examples which
activate this nonosmotic pathway.

Clarification of the exact interrelationship between the osmotic and nonosmotic release of
ADH needs further examination, particularly in the area of central neurotransmitters. How-
ever, available information allows for the proposal of a model of this interaction and its clinical
implications which may explain many cases of "reset osmostat."

Recent available data also provide support for ADH playing a role in the maintenance of
blood pressure under certain circumstances. Like other potent vasoconstrictors, preliminary
evidence suggests that ADH requires transcellular calcium influx for its vascular effects.

Adrenal, thyroid, and edematous disorders have all been shown to be associated with
abnormal water excretion. The results of recent studies indicate that these abnormal physiologi-
cal states have impaired water excretion as a result of both nonosmolar factors stimulating
ADH release and intrarenal factors, including diminished glomerular filtration rate or increased
proximal tubule reabsorption which lead to decreased distal fluid delivery to the diluting
segment of the nephron.

Verney's original studies demonstrating the osmoreceptor regulation of ADH release remain
a milestone in renal physiology. In the past decade, considerable new information about
nonosmotic regulation of ADH has led to further understanding of renal water regulation in
health and disease; nevertheless, many of these answers have only stimulated the imagination to
ponder even more questions.

INTRODUCTION

In the presence of large variations in water intake, the osmotic concentration of
body fluids in a healthy man is maintained within a narrow range between 286 and
294 mOsm/ kg H20. This ability to maintain the body fluids' osmotic concentration
within a normal range is dependent on the operation of a functioning thirst-
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neurohypophyseal-renal feedback system. Osmotic control for vasopressin (ADH)
release from the neurohypophyseal system has been recognized for several years [1].
With the technological advancement of a highly accurate radioimmunoassay for
ADH measurement, further characterization of the sensitivity of this feedback system
has recently been elucidated. Although some evidence existed many years ago that
nonosmotic stimuli also could affect ADH release [1], recent experimentation has
unequivocably demonstrated that ADH secretion is also mediated by nonosmotic
stimuli which are modulated by a separate anatomic pathway from the hypothalamic
osmoreceptor. Clinical studies, as well as sensitive electrophysiological studies, have
been helpful in clarifying the relationship between the osmotic and nonosmotic
pathways for ADH release. Recent experiments are also beginning to explore the
central nervous system neurotransmitters which may mediate the release of ADH.
Finally, the role of ADH in the maintenance of blood pressure and in the pathophy-
siology of impaired water excretion in various disease states is also beginning to be
clarified. The purpose of this paper is to review the current state of the art regarding
the control of ADH release and the role this hormone plays in various pathophysio-
logical conditions.

OSMOTIC CONTROL OF ADH RELEASE

Verney's classical experiments on conscious dogs were the first to demonstrate the
existence of an "'osmoreceptor" regulating urine flow [1]. These studies were also the
first to suggest that the "osmoreceptor" influences the release of ADH from the
posterior pituitary gland. Subsequent experiemnts have localized the "osmoreceptor"
to the anterior hypothalamus [2].
Other investigators have suggested a "sodium receptor" theory for the release of

ADH [3,4]. Indirect evidence against this hypothesis is that comparable increments in
plasma osmolality during hypertonic saline and hypertonic mannitol infusions
provide the same degree of rise in plasma ADH levels, yet extracellular fluid (ECF)
sodium concentration decreases with hypertonic mannitol [5,6]. More direct evidence
against the "sodium receptor" theory is that with infusions of hypertonic saline,
hypertonic sucrose, or hypertonic urea, sodium concentration increases in the
cerebrospinal fluid, but, as will be discussed later, only hypertonic saline and sucrose
cause an antidiuresis [4,7,8].

Until the recent technological advancement of the measurement of plasma ADH
by radioimmunoassay, little additional knowledge was added to Verney's original
views of secretion and control of ADH. Robertson and his colleagues, with the aide
of a sensitive radioimmunoassay for ADH assay, have been able to support Verney's
observation by showing a close interrelation between plasma osmolality and ADH
levels [9]. The osmotic threshold for ADH release is defined using linear regression
analysis as the point of intercept on the horizontal axis (280 mOsm/kg H20). The
slope of the linear regression line characterizes the sensitivity of the osmoreceptor.
This use of linear regression analysis to define the functional properties of the
osmoreceptor has recently been challenged [ 10]. However, whether the mathematical
model to define the relationship among the osmoreceptor, plasma ADH, and plasma
osmolality is linear or exponential makes little functional difference within the
physiological range of plasma osmolality [11].
Robertson and his associates have also demonstrated a significant correlation

between plasma ADH levels and urinary osmolality [12]. Patients with nephrogenic
diabetes insipidus are, of course, the exception to this relationship. Use of the
radioimmunoassay of plasma ADH has confirmed the remarkable sensitivity of the
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osmoreceptor-ADH-renal reflex. A mere 1 percent increase in total body water can
decrease plasma ADH levels and urine osmolality while a 2 percent increase in total
body water causes maximum suppression of ADH and dilution of urine. In the
opposite direction, maximum urinary concentration and increased ADH secretion
occurs with just a 2 percent decrease in total body water [13].

Several potential factors may affect the initial release of ADH during a rise in
plasma osmolality (Table 1). The osmotic threshold for ADH release may be
influenced by genetic or environmental factors [12,15,16] as well as species variation
[6,9,14,16-18]. Soem evidence suggests that the intracellular solute concentration
may influence the osmotic threshold for ADH release [12,17]. Nonosmotic stimuli
such as hypovolemia or hypotension appear to lower the osmotic threshold of the
system [6,17,19].

Several potential factors affect the sensitivity of the release of ADH (Table 2).
Recent evidence has shown that there is a greater rise in plasma ADH for the same
degree of increase in plasma osmolality in older rather than younger individuals [20].
No detectable differences in osmotic threshold, however, were observed between the
different age groups. Evidence also suggests that the faster the rate of change of
plasma osmolality, the sensitivity of ADH release appears to increase also [6,12]. As
there are individual variations in osmotic threshold, individual variations in the
sensitivity of the osmoreceptor mechanism are also seen [12]. Verney originally
demonstrated, and others have confirmed, that the type of solute utilized to provide
an osmotic stimulus for ADH release must be considered [1,5,6]. Hypertonic saline
and hypertonic mannitol infusions provide the same degree of rise in ADH levels.
Hypertonic urea, however, is a poor osmotic stimulus for ADH secretion. Since
osmoreceptor cells appear to sense cell volume and urea easily penetrates into cells, it
is unable to provide an "effective" osmotic stimulus [13]. Pertinent to this area of
discussion is the hypothesis that the blood-brain barrier is the semipermeable
membrane for osmoregulation [3]. If this were the case, urea, which does not readily
penetrate the blood-brain barrier, would be a potent stimulus for ADH secretion.
This datum suggests, therefore, that the location of the osmoreceptor is in a portion
of the brain that is anatomically exterior to the blood-brain barrier. The subfornical
organ and the organum vasculosum of the lamina terminalis meet these anatomical
requirements [3,13].

Results from Athar and Robertson [5,6] show, in contrast to studies from Verney
[1], that in man suppression of ADH release results from the infusion of hypertonic
glucose. This information leads one to speculate that the polyuria associated with
poorly controlled diabetes mellitus may not just be the result of an osmotic diuresis
with glucosuria but also is due to ADH suppression [13]. The mechanism and
confirmation of this proposed suppression of ADH by hyperglycemia remains to be
studied.

TABLE 1
Potential Factors Affecting the Initial Release of ADH During a Rise in Plasma Osmolality

1. Genetic versus environmental versus methodology
2. Species variation
3. Intracellular solute concentration

a. Decreased potassium
b. Starvation

4. Nonosmotic stimuli
a. Hypovolemia
b. Hypotension
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TABLE 2
Potential Factors Affecting the Sensitivity (Slope) of the Osmotic Release of ADH

1. Age
2. The rate of change of the osmotic stimulus
3. Individual variation in osmotic threshold for release
4. Nature of the solute providing the osmotic stimulus

a. Hypertonic saline
b. Mannitol
c. Urea
d. Glucose

5. Angiotensin II (?)
6. Nonosmotic stimuli

a. Hypovolemia

In the scientific literature, controversy exists as to the role of angiotensin II
stimulating ADH release [21-24]. A clear dissociation between plasma ADH levels
and renin activity has been demonstrated in man [25]. The reason for the discordant
results may be due to differences in experimental design and methodology [13].
Further experiments are indicated to clarify the controversy in this specific area.

Finally, there is the question of whether nonosmotic stimuli can affect the
sensitivity of the osmoreceptor. Studies from the same laboratory and in the same
species have shown different results concerning this subject [17,19]. More data,
therefore, are needed to examine the role of changes in volume status and other
nonosmotic stimuli on the sensitivity of the osmoreceptor [13].

NONOSMOTIC CONTROL OF ADH RELEASE

Verney's original studies were primarily concerned with the role of osmotic control
of ADH release [1]. These early experiments, however, also revealed that the
production of "emotional stress" by electrical stimulation of the flanks of the dogs
resulted in a small and transient antidiuresis. These investigators also noted that, with
the electrical stimulation, simultaneous elevations in blood pressure accompanied the
antidiuresis. Denervation of the adrenals and kidneys bilaterally and sectioning of the
splanchnic nerves were undertaken to eliminate the possibility that sympathetic
stimulation during the "emotional stress" was obscuring an even greater antidiuresis.
They postulated an inhibitory effect on ADH release or a diminished end-organ
response by stimulation of the sympathetic nervous system. Indeed, when electrical
stimulation was performed after interruption of these neural pathways, a larger and
more sustained antidiuresis resulted. Further support for a role of the sympathetic
nervous system was obtained since electrical stimulation also failed to produce a
significant antidiuresis when these animals were infused with either norepinephrine
or tyramine. The question still remained as to whether the sympathetic discharge
inhibited ADH release or diminished the end-organ response to ADH. Experiments
performed in water diuresing animals being infused with tyramine and then given
posterior pituitary extract demonstrated an antidiuresis which was comparable to
that observed in control animals not receiving tyramine. This finding suggested a
central, rather than a renal, interaction between ADH and the sympathetic nervous
system. Verney and his associates reasoned that the suppression of ADH release via
the sympathetic nervous system was not secondary to the pressor effects since
bilateral occlusion of the common carotid arteries increased systemic pressure to the
same degree as infusions of catecholamines yet did not interfere with ADH release
[1].
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Several years later, however, studies performed by Share and Levy demonstrated
that common carotid artery occlusion by itself without elevation in blood pressure
could produce an antidiuresis [26]. Later, Schrier and Berl performed bilateral
cervical vagotomy and also produced an ADH-dependent antidiuresis, thereby
further stimulating interest about the role of the autonomic nervous system in the
control of renal water excretion [27] (Fig. 1). These investigators also used atropine
to block the efferent limb of the parasympathetic nervous system and this maneuver
did not alter the effect of cervical vagotomy on renal water excretion. These results
therefore implicated afferent vagal pathways in the nonosmotic release of ADH.
The next development in the area of nonosmotic release of ADH involved studies

of the mechanism by which norepinephrine causes a water diuresis. Some in vitro
results had suggested a direct antagonism of norepinephrine on the effect ofADH at
the level of the renal tubule epithelium [28,29]. However, in vivo studies performed in
our laboratory on ADH-free animals receiving a simultaneous constant infusion of
exogenous vasopressin demonstrated that norepinephrine failed to cause a water
diuresis [30-32], thus not supporting the in vitro results [28,29]. These experiments
indicated that intravenous norepinephrine caused a water diuresis by inhibition of
endogenous ADH secretion [33]. Further experiments from our laboratory demon-
strated that norepinephrine did not directly suppress the central release of ADH
secretion but worked through a baroreceptor-mediated mechanism [30] (Fig. 2). In
these experiments a more significant free water diuresis was achieved during
intravenous as compared to intracarotid infusion of norepinephrine. The diuresis
with intravenous norepinephrine could be abolished by baroreceptor denervation
(bilateral cervical vagotomy and carotid sinus denervation). Since norepinephrine
was shown to inhibit ADH release through a baroreceptor-mediated mechanism and
this inhibitory phenomenon was blocked with an alpha-adrenergic antagonist [34], it
seemed reasonable to examine whether beta-adreneregic agonists stimulate ADH
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FIG. 2. Effect of intravenous norepinephrine on Uosm (above) and CH20 (below) in animals with
cervical sham operation (left) and denervation of baroreceptors (right). Denervation of baroreceptors
abolished the diuretic effect of intravenous norepinephrine. (With permission from [30].)

release. Isoproterenol infusion caused a potent antidiuresis which was ADH-
mediated and, like alpha-adrenergic stimulation, was dependent on the integrity of
baroreceptor pathways [31,35-37].
There is evidence accumulating which suggests that the primary nonosmotic

pathway for regulation of ADH release involves baroreceptor pathways [38,39].
Entirely different stimuli such as exogenous catecholamines [30-37], acute constric-
tion of the thoracic vena cava [40] (Fig. 3), acute hemorrhage [41], hypoxia [42], left
atrial distension [43], atrial tachycardia [44], and nicotine [45] are all dependent on
the integrity of the baroreceptors for their effect on ADH release. The nicotine and
hypoxia stimuli are interesting in that both of these stimulate ADH secretion via a
baroreceptor-mediated mechanism without producing hypotension [42,45]. Hence, it
appears that increased sympathetic stimulation, even in the absence of a fall in
arterial pressure, will activate the baroreceptor pathway for the nonosmotic release of
ADH.
Some controversy has arisen concerning the role of low pressure (left atrial)

baroreceptors in modulating the nonosmotic release of ADH [41,46]. Utilizing
bioassay measurements of plasma ADH, the results of some studies suggest that
suppression of ADH does not mediate the diuresis associated with left atrial
distension while other experiments provide contrary results [47,48]. de Torrente et al.
have recently found, in animals without an endogenous source of ADH release, that
with infusion of exogenous ADH left atrial distension did not cause a diuresis [43].
Left atrial distension in intact animals also was associated with a reversible decrease
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FIG. 3. Effect of TIVC constriction on Uosm (above) and CH20 (below) in intact (left), hypophysectom-
ized (middle), and baroreceptor-denervated animals (right). The denervated and innervated kidneys are
denoted by dashed and solid lines, respectively. (With permission from [40].)

in radioimmunoassayable titers of ADH (Fig. 4). Suppression of ADH via vagal
pathways has also been shown to be important in pacemaker-induced atrial tachy-
cardia associated with elevated left atrium pressure [44]. Recently, Bennett and
Yaron have produced an antidiuresis associated with an elevated plasma ADH titer
measured by radioimmunoassay in a model of pulmonary hypertension which
decreases left atrial pressures [49]. Taken together, these experimental results indicate
that low, as well as high, pressure baroreceptors are important in modulating the
nonosmotic release of ADH.
Other pathways for stimulation of ADH release have been suggested. These

include a cerebral pain center [50], chemoreceptors [51], and a cerebral emetic center
[52]. However, no experimental data in support of these proposed pathways has yet
been demonstrated [13,42]. It is conceivable that any effect of pain and nausea on
ADH release may be mediated through baroreceptor pathways [13], since these
events are no doubt associated with altered autonomic neural tone. Figure 5 is a

FIG. 4. Effect of an increase in left
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sopressin concentration in intact dogs.
(With permission from [43].)
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5) Left Atrial Distension FIG. 5. Schematic representation of stimuli that
6) Atrial Tachycardia result in ADH release via baroreceptor pathways.
7) Hypoxia (With permission from [13].)

schematic representation of the various experimental stimuli which have been
demonstrated in our laboratory to alter nonosmotic release of ADH through the
baroreceptor pathways.

RELATIONSHIP BETWEEN OSMOTIC AND NONOSMOTIC
PATHWAYS FOR ADH RELEASE

Some understanding of the interaction between the osmotic and nonosmotic
pathways for ADH release has recently been obtained. Some of this knowledge has
accrued from the study of patients who have been classified as having "essential
hypernatremia" [53]. These patients appear to have an intact pathway for nonos-
motic release of ADH but lack an osmoreceptor-mediated pathway. Adipsia is
present in these patients, thus indicating ablation of the thirst center. Hypothalamic
lesions have been demonstrated in most cases. One can reasonably conclude from this
information that the sites of the osmoreceptor and thirst center are located in close
proximity in the hypothalamus, both of which must be anatomically separate from
the baroreceptor pathways for the nonosmotic control of ADH. The magnocellular
nuclei in the supraoptic and paraventricular nuclei must also be anatomically
separate from the osmoreceptor cells, since ADH synthesis and release was normal in
response to a nonosmotic stimulus, i.e., drug-induced hypotension.

Further insight into the interaction between the osmotic and nonosmotic pathways
has been obtained from electrophysiological data [54]. Studies performed by Kannan
and Yagi [54] on supraoptic neurons in rats have demonstrated that both nonosmotic
and osmotic stimuli can evoke electrical activity, which correlates with ADH release,
from the same supraoptic neuron. From the information gleaned from this study and
that of patients with "essential hypernatremia" the following model has been
proposed (Fig. 6). The same supraoptic and paraventricular nuclei receive inputs
from anatomically separate osmotic and nonosmotic pathways [13]. Knowledge of
this relationship may explain many cases of "reset osmostat" in which competitive
osmotic and nonosmotic input occurs. Specifically, the presence of a persistent
nonosmotic stimulus for vasopressin may cause water retention until the hypo-
osmolality is of a sufficient degree that the osmoreceptor pathway then predominates
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FIG. 6. Representation of a model for osmotic
and nonosmotic control of ADH release. (With

Capillary permission from [13].)

and vasopressin release is then suppressed. On the other hand, some nonosmotic
stimuli are so potent that the hypo-osmolality is not sufficient to suppress vasopressin
release. The former situation has been termed "reset osmostat" and the latter
situation the "syndrome of inappropriate antidiuretic hormone secretion." In fact,
both of these clinical circumstances may fall within the same spectrum in which the
ultimate balance between opposing osmotic and nonosmotic stimuli dictates the level
of plasma osmolality rather than any intrinsic "resetting" of the hypothalamic
osmoreceptors.
The details of central neurotransmission for ADH release have not been well

delineated. Currently, important roles have been claimed for cyclic nucleotides [13],
catecholamines [3,55,56], calcium [57,58], and acetylcholine [3,55,59]. Miller et al.
have shown that catecholamines may have an in vivo role as potential neurotransmit-
ters in the release of ADH [56]. Rats with depleted brain catecholamines secondary
to intraventricular 6-OH dopamine injection had decreased responses in urine
osmolality and smaller rises in radioimmunoassayable titers of ADH with both
osmotic and nonosmotic stimuli (Figs. 7 and 8). This study did not differentiate
between a role for norepinephrine versus dopamine in this neurotransmission of
ADH, and thus further studies are needed in this area. Since catecholamines have
been found in some tissues to enhance calcium movement into cells [60], it is quite
provocative that Handelman et al. have recently implicated cellular calcium influx in
the nonosmotic release of ADH in vivo [58]. In this study, two different inhibitors of
cellular influx were shown to blunt the nonosmotic release of ADH.

VASCULAR EFFECTS OF ADH

The knowledge that ADH or vasopressin has vasoconstrictor properties when
given in large doses has been known for many years. Very recent data suggests that,
like catecholamines and angiotensin II, ADH induces vasoconstriction in vivo by
enhancing transcellular calcium influx [61]. The recent availability of an agent, 1-
deamino penicillamine, 2-(0-methyl) tyrosine vasopressin, which specifically antag-
onizes the vascular effects of ADH, supports the role of an endogenous vascular
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effect of ADH [62]. When the ADH vascular inhibitor was used in water diuresing
rats with undetectable ADH levels, blood pressure did not fall and ADH levels were
undetectable. However, in fluid deprived rats that were shown to have elevated ADH
plasma levels of approximately 20 pg/ ml, blood pressure significantly declined in the
presence of this vascular inhibitor ofADH. This study [63], therefore, supports a role
for endogenous ADH contributing to the maintenance of blood pressure in fluid
deprived states in the rat.

ABNORMAL WATER EXCRETION IN EDEMATOUS,
ADRENAL, AND THYROID DISEASE

A wide variety of clinical disorders are commonly associated with hyponatremia
secondary to a defect in water regulation [65] (Fig. 9). Regulatory factors which may
influence normal renal dilution include: glomerular filtration rate, renal solute
excretion, tubular fluid delivery to the distal nephron, ADH release, ADH-induced
water permeability of the collecting duct, papillary tissue solute concentration, and
proper functioning of the distal nephron [65]. The understanding of the pathogenesis
of impaired water excretion associated with hypothyroidism, adrenal insufficiency,
and edematous disorders has been an area of interest for many years [66,67]. Current
concepts on the pathogenesis of the renal dilution defect associated with these
disorders will be the primary focus of the remainder of this paper.

4
FIG. 8. Plasma ADH levels for

3 water-diuresing (columns labeled

Plasma "control diuresis" and "6-OHDA di-
ADH 2- uresis") and dextran-stimulated (col-

lplu/cc) _ .05 umns labeled "control dextran" and
_
< .05 "6-OHDA dextran") animals. Neither

1- _ water-diuresing group had ADH levels
T___ significantly different from zero. Val-

ues are expressed in microinterna-
Diuresis Dextran Diuresis Dextran tional units per milliliter. (With per-
WnM5) (n11) (n-5) (n*9) mission from [56].)
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HYPONATREMIA
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Water and Larger Deficit Body Water and Larger Excess
of Total Body Sodium of Total Body Water

ECF Volume Depletion Modest ECF Volume Excess ECF Volume Excess
(No Edema) {Edema}
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Isotonic Saline Water Restriction Water Restriction

\ ~~~I/_\ I _ _ _ _ _ _ _ _ _ _

NORMONATREMIA

FIG. 9. Clinical approach to the patient with hyponatremia. (With permission from Schrier RW, Berl T:
Disorders of water metabolism, Chapt. 1. In Renal and Electrolyte Disorders, 2nd ed. Edited by RW
Schrier. Boston, Little Brown Co, 1980.)

EDEMATOUS DISORDERS:
CONGESTIVE HEART FAILURE AND CIRRHOSIS

Cirrhosis of the liver and congestive heart failure are commonly associated with
water and sodium retention. In both of these disorders, decreased glomerular
filtration rate, increased proximal tubular fluid reabsorption, and elevated plasma
ADH levels have all been proposed as possible mechanisms for diminished renal
water excretion [67]. A decrease in "effective circulating blood volume" is believed to
be the precipitating factor which may activate both the intrarenal (decreased
glomerular filtration rate and increased proximal fluid reabsorption) and extrarenal
(increased ADH) mechanisms which restrict water excretion [67].

Congestive Heart Failure

Bennett et al. have demonstrated decreased distal delivery of tubular fluid in
patients with congestive heart failure [68]. Several animal models of congestive heart
failure have also demonstrated increased proximal tubule reabsorption of tubular
fluid [40,69]. Studies performed by Anderson and associates [40], however, support a
mechanism for acute water retention in experimental low output failure that is
predominantly mediated by decreased afferent parasympathetic tone from barore-
ceptors, which results in ADH release. As previously mentioned, Yaron and Bennett
also produced an ADH dependent antidiuresis in conscious dogs with acute pulmon-
ary hypertension and right ventricular failure [49]. Recent studies utilizing the
radioimmunoassay for ADH have also shown, in patients with congestive heart
failure, persistently elevated levels of ADH in spite of hypoosmolality and marked
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hyponatremia that would normally suppress ADH release in normal subjects [70].
Conscious rats with high output failure from an aorta-caval fistula demonstrated an
inability to excrete a water load while water excretion was normal in ADH-free
Brattleboro rats with the same degree of high output failure [69]. Present clinical and
experimental evidence therefore suggests that both intrarenal factors and persistent
ADH release contribute to the abnormal water excretion commonly seen in heart
failure [66].
Cirrhosis

An impaired ability to excrete a water load occurs in a significant number of
patients with advanced cirrhosis of the liver [71,72]. Improvement in water excretion
occurs with maneuvers that expand extracellular fluid volume which has been shown
also to improve renal hemodynamics and distal nephron delivery [72]. However, it is
also a possibility that expansion of the extracellular fluid space may also suppress
baroreceptor-mediated nonosmotic release of ADH [13,66].
A decrease in free water clearance and an increase in urinary osmolality has been

shown to occur with acute portal vein constriction in the dog [73]. Following acute
hypophysectomy, portal vein constriction produced less of a diminution in free water
clearance and urinary osmolality failed to increase. These studies consequently
incriminate both intrarenal and extrarenal (ADH) mechanisms for impaired water
excretion. Similar results have been shown in animal models of chronic liver disease
produced by carbon tetrachloride (CC 14) [74] or chronic bile duct ligation [75]. In the
CC 14 rat model, elevated serum ADH levels were still detected following a water load
despite hypoosmolality. The defect in water excretion could not be detected in ADH-
free Brattleboro rats with CC 14-induced cirrhosis. Therefore, as seen with congestive
heart failure, there is evidence that suggests a dominant role for nonosmolar-induced
ADH release causing abnormal water excretion in chronic liver disease [66];
however, intrarenal factors may also contribute.

HYPOTHYROIDISM

Impairment of water excretion and hyponatremia has been described in patients
[76] and animals [77] with hypothyroidism. Thyroid hormone replacement has been
shown to significantly improve this dilution abnormality [77]. Diminished renal
blood flow and glomerular filtration have been noted in the hypothyroid state,
suggesting important intrarenal mechanisms for the dilutional defect [66,76]. In the
myxedematous patient the most likely etiology of the renal hypoperfusion and
augmented proximal tubule reabsorption is the decreased systemic hemodynamics
which has been observed [66]. In hypothyroid patients receiving an oral water load a
modest increase in minimum urinary osmolality occurs associated with a marked
limitation in urine flow rate [76]. TIhese findings are most consistent with intrarenal
factors having a dominant role in altered water excretion in hypothyroidism [66].
Studies, however, using radioimmunoassay measurements of ADH and ADH-free
Brattleboro rats also support the contention that vasopressin-independent renal
factors limit water excretion in hypothyroid states [66,76]. However, Skowsky's
studies also revealed that in some patients, despite hypoosmolality, there were
elevated levels of ADH, thus implicating enhanced vasopressin secretion in at least
some patients with hypothyroidism [76]. Other studies in rats [78] and sheep [79] also
indicate a role of ADH in the impaired water excretion associated with hypothyroid-
ism. Decreased cardiac output in advanced hypothyroidism with activation of the
baroreceptors is the most likely explanation for this enhanced ADH secretion. The
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relative roles of ADH and intrarenal factors apparently depend therefore on the
severity of the hypothyroid state. Mild hypothyroidism causes diminished water
excretion predominantly secondary to intrarenal factors while ADH release also
becomes involved in more severe hypothyroidism.

ADRENAL INSUFFICIENCY

Adrenal insufficiency is another pathological state associated with a dilutional
defect. It appears that separate roles have been defined for mineralocorticoid and
glucocorticoid deficiencies [67].

Mineralocorticoid Deficiency

Early studies by Kleeman and associates corrected the abnormal water excretion in
primary adrenal insufficiency with the administration of glucocorticoids [80].
Unfortunately, pharmacological doses of steroids were used which could have
conceivably occupied mineralocorticoid receptors and thereby corrected the altered
water excretion [66]. In this regard, other investigators replaced the extracellular
fluid volume, but not glucocorticoid hormone, in Addisonian patients and demon-
strated improvement in the ability to excrete a dilute urine [81].
With the aid of bioassay measurements of ADH, Share and Travis [82] were able

to show that either volume expansion with sodium chloride supplements or glucocor-
ticoid replacement could inhibit ADH secretion in dogs with adrenal insufficiency.
Ufferman et al. studied conscious adrenalectomized dogs replaced with physiological
doses of glucocorticoids [83]. These animals were shown to have an impaired
response to a water load and develop hyponatremia. This hyponatremia was
associated with extracellular fluid volume depletion. Either saline drinking water or
chronic mineralocorticoid replacement in physiological doses corrected the defect in
water excretion. Radioimmunoassay levels of ADH in similar animals demonstrated
elevated titers in spite of a hypoosmolar state [84]. The persistent elevation of plasma
ADH was no doubt secondary to the known nonosmotic stimulus of ECF volume
depletion.
As in the previous pathological conditions discussed, intrarenal mechanisms have

also been implicated in the water excretion defect seen in isolated mineralocorticoid
deficient animals. ADH-free Brattleboro rats display a defect in water excretion that
is corrected by mineralocorticoid replacement or normalization of the extracellular
fluid volume [85].

Glucocorticoid Hormone Deficiency

Isolated glucocorticoid deficient states also have been shown to have impaired
water excretion [67,86]. As with the previous pathological conditions discussed both
intrarenal and extrarenal factors have been determined to play major roles in the
altered dilution process [87,88].

Elevated plasma ADH levels measured by radioimmunoassay have been shown in
both glucocorticoid deficient rats [88,89] and dogs [90] with abnormal water
excretion (Fig. 10). A decrease in cardiac function has been seen in both glucocorti-
coid deficient rats and dogs and is the most likely stimulus for the nonosmotic release
of ADH [88,90]. The pathogenesis for the altered cardiac function is currently not
understood, but has been clearly dissociated from extracellular volume depletion. In
this regard, there is evidence that glucocorticoid deficiency directly impairs myocar-
dial function [88,90].

Studies in Brattleboro rats with hereditary hypothalamic diabetes insipidus have
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also provided evidence for ADH independent mechanisms of impaired water
excretion with glucocorticoid deficiency [85,88]. Both Linas and associates [88] and
Green et al. [85] have shown that with prolonged glucocorticoid deficiency intrarenal
factors impair water excretion. This effect is probably secondary to marked decreases
in both systemic and renal hemodynamics [88,90].

It has been suggested that deficiency of glucocorticoid hormones increases water
permeability of the distal nephron [80,91]. Using an isolated perfused renal papilla
preparation, Rayson et al. [92] have provided direct evidence against this postulate.
Moreover, in anuran membranes glucocorticoid hormone enhances, rather than
diminishes, osmotic water movement [93]. The evidence of increased papillary 3',5'-
adenosine monophosphate (cyclic AMP) in papillas from adrenalectomized rats
might suggest a direct effect of glucocorticoid deficiency on collecting duct water
permeability. However, the observation that this effect on papillary cyclic AMP
could be abolished by in vivo but not in vitro ADH administration is compatible with
an effect of glucocorticoid deficiency which is mediated by persistent release of ADH.
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